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3 Quantum equations of motion describing the energy trans-

f‘ fer dynamics via intramolecular anharmonic coupling are pre-

; sented and solved numerically. Dynamical features of the

3 avefage excitations of a homogeneous system (SFG) and a hetero-

geneous system (H/W) are quantitatively discussed in terms of

the intramolecular vibrational relaxation (IVR) rates. Possi-
ble mechanisms of surface-enhanced desorption via low-power

laser radiation are proposed.
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l. Introduction

The selective nature of laser-induced processes, which
crucially depend on the intramolecular vibrational relaxation (IVR)
rate and on the pumping rate of the laser radiation, have been
widely studied for homogeneous (gas-phase) systemsl"3 and more
recently for heterogeneous systems.?™’

For homogeneous systems, several types of selectivity have
been discussed in terms of thé relative magnitudes of the pumping
rate, the IVR rate, the intermolecular vibration-vibration and
vibration-translation rates: (1) mode selective (for fast pumping),
(2) molecule-selective (for fast IVR rate), (3) nonselective
vibrational excitation (for strong intermolecular vibration-vibra-
tion coupling) and (4) thermal excitation of the system.l

For heterogeneous systems, e.g., molecules (atoms) adsorbed
on a solid surface, the nature of the laser selective effects are
characterized not only by the intra- and intermolecular relaxation
processes of the adsorbed species and the pumping rate of the
laser field, but also by the surface-induced damping factor (via
multiphonon processes) and the laser-induced surface dynamical
phenomena, e.g., migration, desorption and predissxociation.e-ll
The laser-stimulated surface processes then may be: (1) mode
selective, (2) adspecies selective, (3) migration (lattice-site)
selective, (4) local heating and (5) nonselective thermal heating.8

In a homogeneous system, the mode- and/or molecule-selec-
tive excitations are possible by a high-power short pulse when

1’12

the IVR rate is small. For a heterogeneous system, the laser-

.
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| stimulated selective surface bond breaking (desorption) is also

possible when the phonon-induced damping rate is small for high-

5,13

order multiphonon processes. The IVR rate therefore plays

the essential role in the nature of the laser-selective excita-

tions, both for homogeneous and heterogeneous systems. In this
Letter, the dynamical features of the intramolecular modes

governed by the intramolecular anharmonic couplings are studied
for two systems: (A) sqs(gas phase) and (B) H/W (hydrogen atom

adsorbed on a tungsten surface).

A 2. Quantum Equations of Motion for a Nonlinear Open System

g‘ The total Hamiltonian describing an anharmonic quantum

oscillator subject to laser (IR) radiation of an open system

may be written as-

=~ BFf
H(t'Ql’Qz’...QN) = HO ap )\Hanh + H' (t)’ (l)

eff
0

(with N normal modes), AHanh is the intramolecular.anharmonic

where H is the effective unperturbed Hamiltonian of the system

coupling and H'(t) is the laser field interaction Hamiltonian.
In a second-quantization representation, the individual terms of

the total Hamiltonian may be expressed by

o fo.—2 T &F; :
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| In eq. (2.a), the imaginary part of the complex effective Hamil~

tonian Pj takes account of the level broadening of the open sys-
tem due to factors such as collisional (pressure) broadening for
a homogeneous system or surface-phonon-induced damping for a
heterogeneous system. In eq. (2.b), two typical terms of the
anharmonic coupling are shown: the first term representing

T2 phase relaxation processes, where no vibrational energy among

the intramolecular modes is exchanged, and the second term
representing the Tl energy relaxation processes where the photon
energy is deposited in the active mode(s) and populated in all
the other inactive mode via anharmonic coupling. In eq. (2.c),
Vj(t)xvjo-cos wt is proportional to the derivative of the dipole
moment and the effective local electric field of the j-th mode
with laser frequency w. We note that the anharmonic coupling

ijk

factors F ik and G mn 2re related to the p~-th derivatives of the

mn
anharmonic potential energy (with respect to the normal coordi-

nates) with p = f£+m+n being the order of the multiquantum coupling.
In order to study the energy transfer among the intra-

molecular modes, we shall first set up the equations of motion of

the energy-related relevant quantities. The solution of the time-

dependent Schrddinger equation
#pYat] = HY )

with the total Hamiltonian H given by eq. (1) may be written as14

M= oxp "H%i‘kA(iHZ(BlhaJ % j) Yoy @)
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where A(t) and B(t) are time-dependent coefficients,

b 1 Substituting eq. (4) into eqg. (3) with the expression of the total 1
Hamiltonian [egs. (1) and (2)], we find the equations of motion of 1

the amplitude functions Bj(j=l,2,---N) to be |
- 4 am n
#dBo) Y om{FR 8y ET 155 +
it foen Gjiﬁ (@*)‘&%?)W@)"m,o (i AIt)j
. .3 -
+ (Vo) mp(id) - (1G4)6; £

where the external detuning (A%) and the internal detuning (AI) are

+1
we have used the usual rotating-wave approximation and operator
14

. j= - _ - _ —_
defined by AE 2n(vj vj) w and AI 2ﬂ(2vi+mvj ndL In deriving eq. (5),

algebra such as

[rp €] F) [wp(-B)] = F(a+8T), @

where F(a+) is any operator function and Bj are c-numbers.

The important features of the quantum equations of motion
[egq. (5)] are: (1) the j-th normal mode of the system is strongly
coupled to the laser field when V.o+0 and the external detuning is

J
not far-off the resonance condition A%=0 (due to the anharmonicity,

we shall find later that the optimal detuning is red-shifted, i.e.,
5 A%>0);(2) the intramolecular coupling is governed by the coupling

1 ijk ijk
‘ strengths AFzmn’ AGlmn

. molecular coupling to be significant, we shall expect a near

and the internal detuning AI: for the intra-
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resonance AI~0, which was also shown by a classical treatment;7’ls
(3) by eq. (5) and its compléx conjugate, we find that the equation
of motion for B;Bj contains no T2 dephasing term, i.e., no vibra-
tional energy is exchanged among the intramolecular modes due to

the T, dephasing processes; (4) the amplitude function is related

to the average excitation in the Poisson distribution16
—\ =2
— "'71\ \ 71', (7)
Ej(i’) exp J)m}/}‘ ,

where Pn. is the energy population of a harmonic oscillator (for
]
A=0) and nj and ﬁj are the vibrational quantum number and the

average excitation of the j-th mode, respectively:; and
= 2 P
nbr= 18 =Y P %)
j d q}; A

Therefore the average excitation ﬁj=|Bj|2 is a relevant quantity
in describing the energy distribution among the intramolecular

modes.

3. Dynamical Excitation and Optimal Detuning

(A) SF, gas-phase system

To show the role of the external and internal detunings in
IVR, we now first consider the gas-phase SF6 system in the colli-
sionless low-pressure regime (i.e. Fj=0) and focus on the case of
the fourth-order anharmonic coupling 50302206, where ¢ is the an-
harmonicity and Q3,Q2 and QG are the normal coordinates of the V3

(active), v, and Ve modes. The corresponding internal detuning

then is AI=2n(v3-2v

2-v6) and the external detuning is AE=2ﬂv3-w,

1
|




o

where w is the frequency of the tunable CO2 TEA laser which is
near resonant to the v3 mode. The quantum coupled equations of

motion [eg. (7)] for this case become

7 5" = /q&éfgff-/\/q Cz:('s %1/5’\‘”70 (4'41) +{Wz)iqap(m;t)) (Za) i
(B =XCIB" 8 +2NC PG B LG o (x451), o
K B=NG*FEL+XNG GG B G wp (< 42),

where Bj(j=1,2,3) are the related amplitude functions of the

-
s

(2.c)

normal modes V3r Vg and Ve respectively; A'=12A, Ai=2n(v§+~vé-2v;)
and Aé=2nv§-w, with vi(j=2,3,6) are the anharmonic-corrected
frequencies, i.e., v5=vj-x'cj/ﬁ; Cj are the gquantization con-
stants Cj=fﬁ72mjmj)l/2. The above system, for the case of exact
resonance K£=0, was discussed and the related IVR was estimated

by Gan et al.12 Here we shall show the dynamical features of IVR
and find the optimal external and internal detunings by solving
the coupled equations of motion numerically. We investigate the
time evolution of the average excitations, ﬁ1=|Bl|2, ﬁz=|82l2 and
ﬁ3=|B3|2, governed by eqgs. (9) with the initial Boltzmann popula-
tions at room temperature (T=300K), Bl(0)=0.10, BZ(°)=°‘214 and
B;(0)=0.417, and the initial phases tan-l[Ij(O)/Rj(O)]=0, where
Ij and Rj are the imaginary and real parts of Bj(j=1,2,3).

Fig. 1 shows the peak value of the average excitation

(ﬁi) of the active (v;) mode as a function of the external detun-

ing with laser intensity I=108 W/cmz. It is seen that the optimal
1

nk
and the value of N} 4. ..ayses rapidly

%* -
external detuning AE= 17 cm

" *
tor AE larger than AE. This




=)=

*"red-shift" behavior of the optimal detuning is a general feature
of any laser-excited anharmonic oscillator where the energy spac-
ings are closer for higher levels. [For more detailed analysis
we refer the reader to Ref. 17.] Figs. 2(aA) and (B)

show the exact resonance and the far-off resonance, respectively.
It is seen that the peak value of the v, mode (ﬁ;) decreases from

N5<0.4 (for 4%=0) to f3=0.1 (for A7=63 cm '

),'By our numerical results,
we estimate that the rising times of the average excitations ti
[defined by the first peak values of the average excitation ﬁi(t*)]
range from ti=27 picoseconds (ps) to ti=70 ps depending on the
internal detuning A&. However, the rising times of the v, mode,

Sl

A typical excitation diagram is shown in Fig. 2(C) for the case
of (ag/2m,A7/2m) = (2.71,1.00).

i.e., the IVR times are in the order of t%=10 ps (or 3.3 cm

Finally, we consider the optimal internal detuning where the intra-
molecular anharmonic coupling is the most significant (or the maxi-

mum excitation of the v, mode n%). We see, from Fig. 3, that the

1 when the external

. 3 1 =
detuning is fixed at its optimal value AE/2n~2.7 cm l.

optimal internal detuning is A;/2n=l.6 cm

(B) H/W heterogeneous system

1,18

The IR spectrum of H/W is given by (in units of cm )~ :

=1048.6, v2=645.3 and v.=1290.6. The fourth-order anharmonic

i 3
coupling is given by e'QiQZQ3, e AI=2n(2vl-v2-v3), where the
21 mode is vibrationally excited by a CO2 laser. Again, we investi-
gate the average excitations of these three modes for the case of

Pj=0. Since the surface-phonon-induced level width (rj) simply

causes the decay of the energy excitations, it does not affect

the rates of IVR significantly.5

I
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Two typical dynamical features of the average excitations
ﬁl’ 52 and ﬁ3 (for v,, v, and v, modes, respectively) with laser

g 2 and the anharmonocity €'=5 cm * are shown

intensity I=10" W/cm
8 in Figs. 4(A) and (B). It is seen that these dynamical patterns
of the excitations governed by 6'050203 are significantly different
from that of the SF6 system governed by eQ3Q§QG. We note that
the former system involves the operator function afasas corres-
ponding to a two-photon processes followed by an anharmonic two-
quanta coupling, while the latter system involves a3(a5)2ag cor-
responding to a single-photon processes followed by an anharmonic
| three-quanta coupling. We also note that the IVR rate of the
H/W system is faster than that of the SF6 system; however, the
average excitation of the active mode in H/W system is lower since
the two-photon transition (governed by uaEQZ) is usually less
probable than the single-photon transition, i.e., the dipole
transition governed by uéEQ, where ué and us are, respectively,
the first and second derivatives of the active dipole moment
with respect to the normal coordinate Q and E is the local elec-
tric field acting on the species.

In conclusion, we note that for a heterogeneous system
the local electric field acting on the adspecies may be greatly
enhanced by the surface effects such as roughness.19 Furthermore,

the surface bond breaking can also be possible via van der Waals
; ; : 20,21
interaction or the surface-migration-induced rafe processes. 0,

One of us (J.L.) would like to thank Prof. Z. Gan of
Peking University for useful communications and sending their
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Figure Captions

Fig. 1. The peak value of the average excitation of the active

b= . 4
mode (ni) vs. the external detuning (AE). [SF6 system].

Fig. 2. The time-dependent average excitations of the active

mode (n,), the v, mode (n.,) and the v, mode (n,) for
1 2 2 3

6
the detunings (A%/zn,A&/Zn) = (A) (0,0) exact resonance,
(B) (0,20) far-off internal resonance and (C) (2.71,1.00).

A%/2w = 2.71 is the optimal external detuning.

Fig. 3. The peak value of the average excitation of the v,y

— . N / . =
mode (na)_vs. the internal detuning (4;) with the opti

mal external detuning A%=AE.

Fig. 4. The dynamical features of the average excitations of
the active mode (ﬁl), the A mode (nz) and the Vj mode
(53) for a heterogeneous system H/W with detunings

(E%/Zﬂ,d&/Zﬂ) = (A) (0,0) exact resonance and (B)

(10,80) .
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